4個Python項目管理與構(gòu)建工具,建議收藏!(4個python項目管理與構(gòu)建工具,建議收藏的內(nèi)容)
來源丨網(wǎng)絡(luò)
Python 歷時這么久以來至今還未有一個事實上標準的項目管理及構(gòu)建工具,以至于造成 Python 項目的結(jié)構(gòu)與構(gòu)建方式五花八門。這或許是體現(xiàn)了 Python 的自由意志。
不像 Java 在經(jīng)歷了最初的手工構(gòu)建,到半自動化的 Ant, 再到 Maven 基本就是事實上的標準了。其間 Maven 還接受了其他的 Gradle(Android 項目主推), SBT(主要是 Scala 項目), Ant Ivy, Buildr 等的挑戰(zhàn),但都很難撼動 Maven 的江湖地位,而且其他的差不多遵循了 Maven 的目錄布局。
回到 Python,產(chǎn)生過 pip, pipenv, conda 那樣的包管理工具,但對項目的目錄布局沒有任何約定。
關(guān)于構(gòu)建很多還是延續(xù)了傳統(tǒng)的 Makefile 的方式,再就是加上 setup.py 和 build.py 用程序代碼來進行安裝與構(gòu)建。關(guān)于項目目錄布局,有做成項目模板的,然后做成工具來應(yīng)用項目模板。
下面大概瀏覽一下四個工具的使用
- CookieCutter
- PyScaffold
- PyBuilder
- Poetry
CookieCutter 一個經(jīng)典的 Python 項目目錄結(jié)構(gòu)
$ pip install cookiecutter$ cookiecutter gh:audreyr/cookiecutter-pypackage # 以 github 上的 audreyr/cookiecutter-pypackage 為模板,再回答一堆的問題生成一個 Python 項目......project_name [Python Boilerplate]: sample......
最后由 cookiecutter 生成的項目模板是下面的樣子:
$ tree samplesample├── AUTHORS.rst├── CONTRIBUTING.rst├── HISTORY.rst├── LICENSE├── MANIFEST.in├── Makefile├── README.rst├── docs│ ├── Makefile│ ├── authors.rst│ ├── conf.py│ ├── contributing.rst│ ├── history.rst│ ├── index.rst│ ├── installation.rst│ ├── make.bat│ ├── readme.rst│ └── usage.rst├── requirements_dev.txt├── sample│ ├── __init__.py│ ├── cli.py│ └── sample.py├── setup.cfg├── setup.py├── tests│ ├── __init__.py│ └── test_sample.py└── tox.ini3 directories, 26 files
這大概是當前比較流行的目錄結(jié)構(gòu)的主體框架,主要元素是:
$ tree samplesample├── Makefile├── README.rst├── docs│ └── index.rst├── requirements.txt├── sample│ ├── __init__.py│ └── sample.py├── setup.cfg├── setup.py└── tests ├── __init__.py └── test_sample.py
項目 sample 目錄中重復(fù) sample 目錄中放置 Python 源文件,tests 目錄中是測試文件,再加一個 docs 目錄放文檔,README.rst, 其他的用于構(gòu)建的 setup, setup.cfg 和 Makefile 文件。
這其實是一個很經(jīng)典的 Python 項目結(jié)構(gòu),接下來的構(gòu)建就用 make 命令了,輸入 make 會看到定義在 Makefile 文件中的指令
$ makeclean remove all build, test, coverage and Python artifactsclean-build remove build artifactsclean-pyc remove Python file artifactsclean-test remove test and coverage artifactslint check styletest run tests quickly with the default Pythontest-all run tests on every Python version with toxcoverage check code coverage quickly with the default Pythondocs generate Sphinx HTML documentation, including API docsservedocs compile the docs watching for changesrelease package and upload a releasedist builds source and wheel packageinstall install the package to the active Python's site-packages
為使用上面的構(gòu)建過程,需要安裝相應(yīng)的包,如 tox, wheel, coverage, sphinx, flake8, 它們都可以通過 pip 來安裝。之后就可以 make test, make coverage, make docs,make dist 等。其中 make docs 可以生成一個很漂亮的 Web 文檔。
PyScaffold 創(chuàng)建一個項目
PyScaffold 顧名思義,它是一個用來創(chuàng)建 Python 項目腳手架的工具,安裝和使用:
$ pip install pyscaffold$ putup sample
這樣創(chuàng)建了一個 Python 項目,目錄結(jié)構(gòu)與前面 cookiecutter 所選的模板差不多,只不過它把源文件放在了 src 目錄,而非 sample 目錄。
$ tree samplesample├── AUTHORS.rst├── CHANGELOG.rst├── CONTRIBUTING.rst├── LICENSE.txt├── README.rst├── docs│ ├── Makefile│ ├── _static│ ├── authors.rst│ ├── changelog.rst│ ├── conf.py│ ├── contributing.rst│ ├── index.rst│ ├── license.rst│ ├── readme.rst│ └── requirements.txt├── pyproject.toml├── setup.cfg├── setup.py├── src│ └── sample│ ├── __init__.py│ └── skeleton.py├── tests│ ├── conftest.py│ └── test_skeleton.py└── tox.ini
整個項目的構(gòu)建就要用 tox 這個工具了。tox 是一個自動化測試和構(gòu)建工具,它在構(gòu)建過程中可創(chuàng)建 Python 虛擬環(huán)境,這讓測試和構(gòu)建能有一個干凈的環(huán)境。
tox -av 能顯示出定義在 tox.ini 中所有的任務(wù):
$ tox -avdefault environments:default -> Invoke pytest to run automated testsadditional environments:build -> Build the package in isolation according to PEP517, see https://github.com/pypa/buildclean -> Remove old distribution files and temporary build artifacts (./build and ./dist)docs -> Invoke sphinx-build to build the docsdoctests -> Invoke sphinx-build to run doctestslinkcheck -> Check for broken links in the documentationpublish -> Publish the package you have been developing to a package index server. By default, it uses testpypi. If you really want to publish your package to be publicly accessible in PyPI, use the `-- --repository pypi` option.
要執(zhí)行哪個命令便用 tox -e build, tox -e docs 等
在我體驗 tox 命令過程中,每一步好像都比較慢,應(yīng)該是創(chuàng)建虛擬機要花些時間。
PyBuilder
最好再看另一個構(gòu)建工具 PyBuilder, 它所創(chuàng)建出的目錄結(jié)構(gòu)很接近于 Maven, 下面來瞧瞧
$ pip install pybuilder$ mkdir sample && cd sample # 項目目錄需手工創(chuàng)建$ pyb --start-project # 回答一些問題后創(chuàng)建所需的目錄和文件
完后看下它的目錄結(jié)構(gòu):
$ tree sample.├── build.py├── docs├── pyproject.toml├── setup.py└── src ├── main │ ├── python │ └── scripts └── unittest └── python
構(gòu)建過程仍然是用 pyb 命令,可用 pyb -h 查看幫助,pyb -t 列出所有的任務(wù), PyBuilder 的任務(wù)是以插件的方式加入的,插件配置在 build.py 文件中。
$ pyb -t sampleTasks found for project "sample": analyze - Execute analysis plugins. depends on tasks: prepare run_unit_tests clean - Cleans the generated output. compile_sources - Compiles source files that need compilation. depends on tasks: prepare coverage - <no description available> depends on tasks: verify install - Installs the published project. depends on tasks: package publish(optional) package - Packages the application. Package a python application. depends on tasks: compile_sources run_unit_tests(optional) prepare - Prepares the project for building. Creates target VEnvs print_module_path - Print the module path. print_scripts_path - Print the script path. publish - Publishes the project. depends on tasks: package verify(optional) coverage(optional) run_integration_tests - Runs integration tests on the packaged application. depends on tasks: package run_unit_tests - Runs all unit tests. Runs unit tests based on Python's unittest module depends on tasks: compile_sources upload - Upload a project to PyPi. verify - Verifies the project and possibly integration tests. depends on tasks: run_integration_tests(optional)$ pyb run_unit_tests sample
PyBuilder 也是在構(gòu)建或測試之前創(chuàng)建虛擬環(huán)境, 從 0.12.9 版開始可通過參數(shù) –no-venvs 跳過創(chuàng)建虛擬環(huán)境這一步。使用了 –no-venvs 的話 Python 代碼將會在運行 pyb 的當前 Python 環(huán)境中執(zhí)行,所需的依賴將要手工安裝。
項目的依賴也要定義在 build.py 文件中
@initdef set_properties(project): project.depends_on('boto3', '>=1.18.52') project.build_depends_on('mock')
隨后在執(zhí)行 pyb 創(chuàng)建虛擬環(huán)境時就會安裝上面的依賴,并在其中運行測試與構(gòu)建。
Poetry
最后一個 Poetry, 感覺這是一個更為成熟,項目活躍度也更高的 Python 構(gòu)建,它有著更強大的信賴管理功能,用 poetry add boto3 就能添加依賴,poetry show –tree 顯示出依賴樹??聪氯绾伟惭b及創(chuàng)建一個項目
$ pip install poetry$ poetry new sample
它創(chuàng)建的項目比上面都簡單
$ tree samplesample├── README.rst├── pyproject.toml├── sample│ └── __init__.py└── tests ├── __init__.py └── test_sample.py
如果給 poetry new 帶上 –src 參數(shù),那么源文件目錄 sample 會放在 src 目錄下,即 sample/src/sample.
poetry init 會在當前目錄中生成 pyproject.toml 文件,目錄等的生成需手動完成。
它不關(guān)注文檔的生成,代碼規(guī)范的檢查,代碼覆蓋率都沒有。它的項目配置更集中,全部在 pyproject.toml 文件中,toml 是什么呢?它是一種配置文件的格式 Tom's Obvious, Minimal Language (https://github.com/toml-lang/toml).
pyproject.toml 有些類似 NodeJS 的 package.json 文件,比如 poetry add, poetry install 命令的行
# 往 pyproject.toml 中添加對 boto3 的依賴并安裝(add 還能從本地或 git 來安裝依賴 ),poetry add boto3 # 將依照 pyproject.toml 文件中定義安裝相應(yīng)的依賴到當前的 Python 虛擬環(huán)境中 # 比如在 <test-venv>/lib/python3.9/site-packages 目錄中,安裝好模塊后也可讓測試用例使用poetry install
其他主要的
1. poetry build # 構(gòu)建可安裝的 *.whl 和 tar.gz 文件2. poetry shell # 會根據(jù)定義在 pyproject.toml 文件中的依賴創(chuàng)建并使用虛擬環(huán)境3. poetry run pytest # 運行使用 pytest 的測試用例,如 tests/test_sample.py4. poetry run python -m unittest tests/sample_tests.py # 運行 unittest 測試用例5. poetry export --without-hashes --output requirements.txt # 導(dǎo)出 requirements.txt 文件, --dev 導(dǎo)出含 dev 的依賴,或者用 poetry export --without-hashes > requirements.txt
poetry run 能執(zhí)行任何系統(tǒng)命令,只是它會在它要的虛擬環(huán)境中執(zhí)行。所以可以想見,poetry 的項目要生成文檔或覆蓋率都必須用 poetry run … 命令來支持 sphinx, coverage 或 flake8。
在 sample 目錄(與 pyproject.toml 文件平級)中創(chuàng)建文件 my_module.py, 內(nèi)容為
def main(): print('hello poetry')
然后在 pyproject.toml 中寫上
[tool.poetry.scripts]my-script="sample.my_module:main"
再執(zhí)行
$ poetry run my-script
就會輸出 "hello poetry"。
通過對以上四個工具的認識,項目結(jié)構(gòu)的復(fù)雜度由 cookiecutter-pyproject -> PyScaffold -> PyBuilder -> Poetry 依次降低,使用的難度大略也是相同的順序