FPGA開發(fā)基本流程有哪些?(fpga開發(fā)基本流程有哪些內(nèi)容)
典型FPGA開發(fā)流程與注意事項(xiàng)
典型FPGA的開發(fā)流程一般如圖所示,包括功能定義/器件選型、設(shè)計(jì)輸入、功能仿真、綜合優(yōu)化、綜合后仿真、實(shí)現(xiàn)、布線后仿真、板級(jí)仿真以及芯片編程與調(diào)試等主要步驟。
FPGA典型設(shè)計(jì)流程
1
功能定義/器件選型
在FPGA設(shè)計(jì)項(xiàng)目開始之前,必須有系統(tǒng)功能的定義和模塊的劃分,另外就是要根據(jù)任務(wù)要求,如系統(tǒng)的功能和復(fù)雜度,對(duì)工作速度和器件本身的資源、成本、以及連線的可布性等方面進(jìn)行權(quán)衡,選擇合適的設(shè)計(jì)方案和合適的器件類型。
“
一般都采用自頂向下的設(shè)計(jì)方法,把系統(tǒng)分成若干個(gè)基本單元,然后再把每個(gè)基本單元?jiǎng)澐譃橄乱粚哟蔚幕締卧恢边@樣做下去,直到可以直接使用EDA元件庫(kù)為止。
”
2
設(shè)計(jì)輸入
設(shè)計(jì)輸入是將所設(shè)計(jì)的系統(tǒng)或電路以開發(fā)軟件要求的某種形式表示出來,并輸入給EDA工具的過程。常用的方法有硬件描述語言(HDL)和原理圖輸入方法等。
原理圖輸入方式是一種最直接的描述方式,在可編程芯片發(fā)展的早期應(yīng)用比較廣泛,它將所需的器件從元件庫(kù)中調(diào)出來,畫出原理圖。這種方法雖然直觀并易于仿真,但效率很低,且不易維護(hù),不利于模塊構(gòu)造和重用。更主要的缺點(diǎn)是可移植性差,當(dāng)芯片升級(jí)后,所有的原理圖都需要作一定的改動(dòng)。
“
目前,在實(shí)際開發(fā)中應(yīng)用最廣的就是HDL語言輸入法,利用文本描述設(shè)計(jì),可以分為普通HDL和行為HDL。普通HDL有ABEL、CUR等,支持邏輯方程、真值表和狀態(tài)機(jī)等表達(dá)方式,主要用于簡(jiǎn)單的小型設(shè)計(jì)。
”
而在中大型工程中,主要使用行為HDL,其主流語言是Verilog HDL和VHDL。這兩種語言都是美國(guó)電氣與電子工程師協(xié)會(huì)(IEEE)的標(biāo)準(zhǔn),其共同的突出特點(diǎn)有:語言與芯片工藝無關(guān),利于自頂向下設(shè)計(jì),便于模塊的劃分與移植,可移植性好,具有很強(qiáng)的邏輯描述和仿真功能,而且輸入效率很高。 除了這IEEE標(biāo)準(zhǔn)語言外,還有廠商自己的語言。也可以用HDL為主,原理圖為輔的混合設(shè)計(jì)方式,以發(fā)揮兩者的各自特色。
3
功能仿真
功能仿真也稱為前仿真是在編譯之前對(duì)用戶所設(shè)計(jì)的電路進(jìn)行邏輯功能驗(yàn)證,此時(shí)的仿真沒有延遲信息,僅對(duì)初步的功能進(jìn)行檢測(cè)。
“
仿真前,要先利用波形編輯器和HDL等建立波形文件和測(cè)試向量(即將所關(guān)心的輸入信號(hào)組合成序列),仿真結(jié)果將會(huì)生成報(bào)告文件和輸出信號(hào)波形,從中便可以觀察各個(gè)節(jié)點(diǎn)信號(hào)的變化。如果發(fā)現(xiàn)錯(cuò)誤,則返回設(shè)計(jì)修改邏輯設(shè)計(jì)。
”
常用的工具有Model Tech公司的ModelSim、Sysnopsys公司的VCS和Cadence公司的NC-Verilog以及NC-VHDL等軟件。
4
綜合優(yōu)化
所謂綜合就是將較高級(jí)抽象層次的描述轉(zhuǎn)化成較低層次的描述。綜合優(yōu)化根據(jù)目標(biāo)與要求優(yōu)化所生成的邏輯連接,使層次設(shè)計(jì)平面化,供FPGA布局布線軟件進(jìn)行實(shí)現(xiàn)。
“
就目前的層次來看,綜合優(yōu)化(Synthesis)是指將設(shè)計(jì)輸入編譯成由與門、或門、非門、RAM、觸發(fā)器等基本邏輯單元組成的邏輯連接網(wǎng)表,而并非真實(shí)的門級(jí)電路。
”
真實(shí)具體的門級(jí)電路需要利用FPGA制造商的布局布線功能,根據(jù)綜合后生成的標(biāo)準(zhǔn)門級(jí)結(jié)構(gòu)網(wǎng)表來產(chǎn)生。
為了能轉(zhuǎn)換成標(biāo)準(zhǔn)的門級(jí)結(jié)構(gòu)網(wǎng)表,HDL程序的編寫必須符合特定綜合器所要求的風(fēng)格。由于門級(jí)結(jié)構(gòu)、RTL級(jí)的HDL程序的綜合是很成熟的技術(shù),所有的綜合器都可以支持到這一級(jí)別的綜合。常用的綜合工具有Synplicity公司的Synplify/Synplify Pro軟件以及各個(gè)FPGA廠家自己推出的綜合開發(fā)工具。
5
綜合后仿真
綜合后仿真檢查綜合結(jié)果是否和原設(shè)計(jì)一致。在仿真時(shí),把綜合生成的標(biāo)準(zhǔn)延時(shí)文件反標(biāo)注到綜合仿真模型中去,可估計(jì)門延時(shí)帶來的影響。
“
但這一步驟不能估計(jì)線延時(shí),因此和布線后的實(shí)際情況還有一定的差距,并不十分準(zhǔn)確。
”
目前的綜合工具較為成熟,對(duì)于一般的設(shè)計(jì)可以省略這一步,但如果在布局布線后發(fā)現(xiàn)電路結(jié)構(gòu)和設(shè)計(jì)意圖不符,則需要回溯到綜合后仿真來確認(rèn)問題之所在。在功能仿真中介紹的軟件工具一般都支持綜合后仿真。
6
實(shí)現(xiàn)與布局布線
布局布線可理解為利用實(shí)現(xiàn)工具把邏輯映射到目標(biāo)器件結(jié)構(gòu)的資源中,決定邏輯的最佳布局,選擇邏輯與輸入輸出功能鏈接的布線通道進(jìn)行連線,并產(chǎn)生相應(yīng)文件(如配置文件與相關(guān)報(bào)告),實(shí)現(xiàn)是將綜合生成的邏輯網(wǎng)表配置到具體的FPGA芯片上,布局布線是其中最重要的過程。
布局將邏輯網(wǎng)表中的硬件原語和底層單元合理地配置到芯片內(nèi)部的固有硬件結(jié)構(gòu)上,并且往往需要在速度最優(yōu)和面積最優(yōu)之間作出選擇。布線根據(jù)布局的拓?fù)浣Y(jié)構(gòu),利用芯片內(nèi)部的各種連線資源,合理正確地連接各個(gè)元件。
“
目前,F(xiàn)PGA的結(jié)構(gòu)非常復(fù)雜,特別是在有時(shí)序約束條件時(shí),需要利用時(shí)序驅(qū)動(dòng)的引擎進(jìn)行布局布線。布線結(jié)束后,軟件工具會(huì)自動(dòng)生成報(bào)告,提供有關(guān)設(shè)計(jì)中各部分資源的使用情況。由于只有FPGA芯片生產(chǎn)商對(duì)芯片結(jié)構(gòu)最為了解,所以布局布線必須選擇芯片開發(fā)商提供的工具。
”
7
時(shí)序仿真
時(shí)序仿真,也稱為后仿真,是指將布局布線的延時(shí)信息反標(biāo)注到設(shè)計(jì)網(wǎng)表中來檢測(cè)有無時(shí)序違規(guī)(即不滿足時(shí)序約束條件或器件固有的時(shí)序規(guī)則,如建立時(shí)間、保持時(shí)間等)現(xiàn)象。
“
時(shí)序仿真包含的延遲信息最全,也最精確,能較好地反映芯片的實(shí)際工作情況。由于不同芯片的內(nèi)部延時(shí)不一樣,不同的布局布線方案也給延時(shí)帶來不同的影響。
”
因此在布局布線后,通過對(duì)系統(tǒng)和各個(gè)模塊進(jìn)行時(shí)序仿真,分析其時(shí)序關(guān)系,估計(jì)系統(tǒng)性能,以及檢查和消除競(jìng)爭(zhēng)冒險(xiǎn)是非常有必要的。在功能仿真中介紹的軟件工具一般都支持綜合后仿真。
8
板級(jí)仿真與驗(yàn)證
板級(jí)仿真主要應(yīng)用于高速電路設(shè)計(jì)中,對(duì)高速系統(tǒng)的信號(hào)完整性、電磁干擾等特征進(jìn)行分析,一般都以第三方工具進(jìn)行仿真和驗(yàn)證。
9
芯片編程與調(diào)試
“
設(shè)計(jì)的最后一步就是芯片編程與調(diào)試。芯片編程是指產(chǎn)生使用的數(shù)據(jù)文件(位數(shù)據(jù)流文件,Bitstream GeneraTIon),然后將編程數(shù)據(jù)下載到FPGA芯片中。其中,芯片編程需要滿足一定的條件,如編程電壓、編程時(shí)序和編程算法等方面。
”
邏輯分析儀(Logic Analyzer,LA)是FPGA設(shè)計(jì)的主要調(diào)試工具,但需要引出大量的測(cè)試管腳,且LA價(jià)格昂貴。
目前,主流的FPGA芯片生產(chǎn)商都提供了內(nèi)嵌的在線邏輯分析儀(如Xilinx ISE中的ChipScope、Altera QuartusII中的SignalTapII以及SignalProb)來解決上述矛盾,它們只需要占用芯片少量的邏輯資源,具有很高的實(shí)用價(jià)值。